x=-(x^2+3x-4)

Simple and best practice solution for x=-(x^2+3x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=-(x^2+3x-4) equation:



x=-(x^2+3x-4)
We move all terms to the left:
x-(-(x^2+3x-4))=0
We calculate terms in parentheses: -(-(x^2+3x-4)), so:
-(x^2+3x-4)
We get rid of parentheses
-x^2-3x+4
We add all the numbers together, and all the variables
-1x^2-3x+4
Back to the equation:
-(-1x^2-3x+4)
We get rid of parentheses
1x^2+3x+x-4=0
We add all the numbers together, and all the variables
x^2+4x-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $

See similar equations:

| -4(m+1)-m-13=-5(m+4)+3 | | (u+5)×10=100 | | j/3.5=4 | | 3.5w=31.53 | | X-6.3=4.1x | | 3x+4+2x=5x+6 | | 10-3x=8x=25 | | t16−2t=t+9+4t | | 7(2x+4)=21 | | A(n)=5+(n-1)3 | | x-7=-7(2x+4)=2114 | | 2/5z=2/5 | | x/4-15/5=1/4 | | 83x=517​ | | (e+1)×6=36 | | (9a-9)=(7a^2+3a+4) | | 4x+13+4x-9=180 | | 8/9y=27 | | (X+8)^3(x-1)=0 | | 8+5y=3y | | 12x-13=34 | | (3y-5)+(5y+2)=135 | | 500+25=2w | | 4x+13+4x-9=180* | | 2/5x+2=-2 | | 6x-9/45-5x=3/5 | | Q=9/8p+25 | | -2(7-2x)=35+x | | 2^4x-1=15 | | 2=4/x+6 | | 7a+3-a-5=-16 | | -(3y-6)+9=0 |

Equations solver categories